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To which extent can optimality principles describe the operation of metabolic networks? By explicitly
considering experimental errors and in silico alternate optima in flux balance analysis, we
systematically evaluate the capacity of 11 objective functions combined with eight adjustable
constraints to predict 13C-determined in vivo fluxes in Escherichia coli under six environmental
conditions. While no single objective describes the flux states under all conditions, we identified two
sets of objectives for biologically meaningful predictions without the need for further, potentially
artificial constraints. Unlimited growth on glucose in oxygen or nitrate respiring batch cultures is
best described by nonlinear maximization of the ATP yield per flux unit. Under nutrient scarcity in
continuous cultures, in contrast, linear maximization of the overall ATP or biomass yields achieved
the highest predictive accuracy. Since these particular objectives predict the system behavior without
preconditioning of the network structure, the identified optimality principles reflect, to some extent,
the evolutionary selection of metabolic network regulation that realizes the various flux states.
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Introduction

The acclaimed goal of systems biology is quantitative under-
standing of functional interactions between the multiple
cellular components to eventually predict network, cell and
organism behavior (Aebersold, 2005; Bork and Serrano, 2005).
Beyond intuition, quantitative understanding inevitably re-
quires computational models to capture the enormous
numbers of molecular components that interact in a highly
nonlinear manner within interlinked information and bio-
chemical networks (Kitano, 2002; Cassman, 2005; Kholoden-
ko, 2006). For most cellular networks, such as signaling or
protein–protein interaction networks, however, we do not
even know all involved components that need to be
represented in a model. Hence, much of the current focus is
on experimental (Aebersold and Mann, 2003; Sopko et al,
2006) and computational (Kholodenko et al, 2002; Stelling,
2004; Reed et al, 2006; Warner et al, 2006) identification
of missing components and their interactions to establish
the network topology as a prerequisite for mechanistic
modeling.

Metabolic networks are a notable exception because their
interaction topology is well established in several cases; that is,
we know most reactions, the enzymes that catalyze them, the
genes that encode the enzymes and how they interact
stoichiometrically within a biochemical network. As incom-
plete as this knowledge may be, it is currently far beyond that
of basically any other cellular network and allows to construct
metabolic models that represent almost entire microbial
genomes (Price et al, 2004). With up to 1000 biochemical
reactions, these genome-scale models allow to predict network
capabilities, for example, by using flux balance analysis (FBA)
(Fell and Small, 1986). Successful FBA applications include
prediction of gene deletion lethality (Edwards and Palsson,
2000a; Forster et al, 2003; Kuepfer et al, 2005), end points of
adaptive evolution (Ibarra et al, 2002) and optimal metabolic
states (Edwards et al, 2001).

In contrast to dynamic models that require detailed,
typically unavailable kinetic parameters, constraint-based
modeling with FBA permits steady-state analysis of large-scale
networks without large fitted parameter sets (Bailey, 2001;
Price et al, 2004; Stelling, 2004). To identify optimal solutions
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in the vast solution space, FBA objective functions are defined
to solve the system of linear equations that represent the mass
balance constraints. While different objectives were proposed
for different biological systems (Kacser and Beeby, 1984;
Heinrich et al, 1997; Ebenhoh and Heinrich, 2001; Holzhütter,
2004; Price et al, 2004; Knorr et al, 2007), by far the most
common assumption is that microbial cells maximize their
growth (see below for further explanation). Since the identified
optimal solutions are often inconsistent with the biological
reality, the solution space is further restricted through
additional constraints that reflect thermodynamic, kinetic or
biochemical knowledge. Another problem is that, depending
on the shape of the solution space, multiple intracellular flux
distributions (alternate optima) may underlie the exact same
optimal value that is identified by the objective (e.g., the
maximum biomass yield) (Lee et al, 2000; Mahadevan and
Schilling, 2003). This space of steady-state flux solutions has
been explored for biological meaning (Mahadevan and Schil-
ling, 2003; Reed and Palsson, 2004; Wiback et al, 2004; Bilu
et al, 2006) and to identify candidate network states (Papin
et al, 2002; Thiele et al, 2005), but was largely ignored in many
FBA studies that examined arbitrary, single optimal solutions
(Segre et al, 2002; Almaas et al, 2004; Papp et al, 2004).

In a fully complementary approach, 13C-experiments are used
to determine intracellular flux states that reveal in vivo
operation of metabolic networks (Hellerstein, 2003; Sauer,
2004; Wiechert and Nöh, 2005; Sauer, 2006). In some instances,
such experimental flux data were used to further restrict the
FBA-computed flux solution space. For lack of experimental
data, however, only one or two arbitrary flux distributions were
considered (Burgard and Maranas, 2003; Wiback et al, 2004).
Attempts to actually predict intracellular fluxes by FBA methods
are few and either unverified (Papp et al, 2004) or tested for a
single case (Beard et al, 2002; Segre et al, 2002; Holzhütter,
2004). With the recent availability of large-scale experimental
flux data from various microbes (Moreira dos Santos et al, 2003;
Blank and Sauer, 2004; Fischer and Sauer, 2005; Perrenoud and
Sauer, 2005; Blank et al, 2005b), a more systematic analysis of
the correlation between the in silico feasible flux space and the
in vivo realized fluxes is now possible.

Here we examine the predictive capacity of 11 linear and
nonlinear network objectives, by evaluating the accuracy of
FBA-based flux predictions through rigorous comparison to
13C-based flux data from Escherichia coli grown under six
environmental conditions. By systematically testing all per-
mutations of 11 objective functions with or without eight
additional constraints, we identify the most appropriate
combination(s) to predict in vivo fluxes by FBA. More
generally, we thus assess whether assumed optimality
principles of evolved network operation are generally valid
or whether specific objectives are necessary for environmental
conditions that require different metabolic activity.

Results

Systematic testing of objective functions
and constraints for FBA

To predict intracellular fluxes through the presently known
reactions of E. coli central carbon metabolism, we constructed

a highly interconnected stoichiometric network model with 98
reactions and 60 metabolites that supports the major carbon
flows through the cell (Figure 1 and Supplementary Table I).
FBA-based fluxes are typically expressed as relative fluxes that
are normalized to the specific glucose uptake rate. Typically,
this reference flux is known, hence absolute fluxes can be
calculated by re-scaling. Due to linear dependencies in the
network, the systemic degree of freedom is restricted to a
limited number of reactions that define the entire flux solution.
For our network, 10 reactions are sufficient to describe the
actual systemic degree of freedom, as identified by calcul-
ability analysis (Van der Heijden et al, 1994; Klamt et al, 2002).
These fluxes were expressed as split ratios at pivotal branch
points in the network, where each of the 10 reactions that
consume a cellular metabolite is divided by the sum of all
producing reactions (Figure 1 and Table I). Qualitatively
identical results were obtained when repeating all reported
simulations directly with the 10 absolute fluxes instead of the
10 split ratios (data not shown).

Dividing a specific consumption flux by all producing fluxes
scales to unity, an unbiased comparison of the 10 network
fluxes with often-different magnitudes is possible. Moreover, it
enhances intuition and biological interpretation because,
wherever possible, the ratios were chosen to represent
metabolic flux ratios that are obtained from 13C-experiments
(Fischer et al, 2004) (Table II and Supplementary Table II). For
example, split ratio R1 represents the fraction of the
intracellular glucose-6-phosphate (G6P) pool that is metabo-
lized through phosphoglucoisomerase (Pgi), relative to the
summed production via G6P-dehydrogenase (Zwf), glucoki-
nase (Glk) and the phosphotransferase system (Pts) (Figure 1
and Table I). The experimentally determined split ratios
(Table II) can be subdivided into three groups: (i) R1, R4, R5,
R6 are always active, (ii) R3 is inactive under all considered
conditions and (iii) R2, R7–R10 are conditionally active.

Optimal solutions in this underdetermined system of linear
equations were identified by FBA with 11 linear and nonlinear
objective functions to identify optimal solutions, some of
which are combinations of pairs of objectives (Table III).
Depending on the shape of the solution space, linear
optimization frequently leads to alternate optima; that is,
alternate sets of feasible flux distributions with an identical
optimal value (Lee et al, 2000; Mahadevan and Schilling,
2003). To quantify the overall variance of in silico fluxes, we
first determined the absolute range of variation for the
individual split ratios by maximizing and minimizing each
flux separately. For example, maximization of biomass yield
(which is synonymous to the frequently used term of
maximization of growth rate (Price et al, 2004)) results in
ranges of the split ratios R1, R4, R6 and R7, but unique values
for the remaining six split ratios (Figure 2A). Maximization of
ATP yield without further constraints, in contrast, is a much
better defined example with unique values for all 10 split ratios
(Figure 2B). Beyond objective functions, these flux variabil-
ities are not only dependent on the chosen objective but also
the network structure, and were also shown to exist in
genome-scale models (Mahadevan and Schilling, 2003; Reed
and Palsson, 2004). To further constrain the solution space, we
imposed eight additional constraints on network operation
(Table IV). The choice of objective functions and constraints
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Figure 1 Central carbon metabolism of E. coli. The 10 reactions that describe the actual systemic degree of freedom are indicated in red arrows. These 10 reactions
are expressed as 10 split ratios, where each of the 10 reactions that consume a cellular metabolite is divided by the sum of all producing reactions. The corresponding
metabolites are indicated in red, whereas the 10 split ratios are shown in blue rectangles. Abbreviations: ACA, acetyl-coenzyme A; ACE, acetate; ACL, acetaldehyd;
ACP, acetyl-P; AKG, alpha-ketoglutarate; CIT, citrate; DHP, dihydroxyacetone-P; ETH, ethanol; E4P, erythrose-4-P; FBP, fructose-1,6-bi-P; FOR, formate; FUM,
fumarate; F6P, fructose-6-P; GAP, glyceraldehyde-3-P; GLX, glyoxylate; G6P, glucose-6-P; ICT, isocitrate; KDG, 2-keto-3-deoxy-6-phosphogluconate; LAC, lactate;
MAL, malate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate, 6PG, 6-phosphogluconate; P5P, pentose-5-P; QUH, ubiquinone; QUH2, ubiquinol; S7P,
seduheptulose-7-P; SUC, succinate; 3-PG, 3-phosphoglycerate; xt, external.

Table I Split ratios of intracellular fluxes that describe the systemic degree of freedom in the network

R1 ¼ nPgi

nGlk þ nPts þ nZwf þ nPgi
Flux into glycolysis

R2 ¼ nEdd

nPgl
Flux into Entner–Doudoroff pathway

R3 ¼ nMgsA

nFbaA þ nFbaB þ nTpiA
Flux into methylglyoxal pathway

R4 ¼ nPykA þ nPykF þ nPts

nEno þ nPps þ nPckA
PEP to pyruvate flux

R5 ¼ nAceE þ nPflB þ nTdcE

nPykA þ nPykF þ nMaeA þ nMaeB þ nDld þ nLdhA þ nEda þ nPts þ nPflB þ nTdcE
Pyruvate to acetylcoenzyme A flux

R6 ¼ nGltA þ nPrpC

nAceE þ nPflB þ nTdcE þ nAcs þ nAdhE þ nMhpF
Flux into TCA cycle

R7 ¼ nAceA

nAcnA þ nAcnB
Flux into glyoxylate shunt

R8 ¼ nPckA

nMdh þ nMqo þ nPpc
Oxaloacetate to PEP flux

R9 ¼ nPta

nAceE þ nPflB þ nTdcE þ nAcs þ nAdhE þ nMhpF
Acetate secretion

R10 ¼ nAdhE þ nMhpF

nAceE þ nPflB þ nTdcE þ nAcs þ nAdhE þ nMhpF
Ethanol secretion

Objective-based flux prediction in E. coli
R Schuetz et al

& 2007 EMBO and Nature Publishing Group Molecular Systems Biology 2007 3



widely predefine the degree of freedom in terms of specific
pathway usage (data not shown), hence appropriate objective/
constraint combinations can potentially be used to approx-
imate metabolic behavior.

We systematically assessed the predictive capability of FBA
by comparing all objective/constraint permutations to 13C-
detected in vivo flux distributions from six growth conditions,
including glucose- and ammonium-limited chemostat cultures
and batch cultures with excess nutrient supply (Table II and
Supplementary Table II). For each of the 99 different
optimization problems, the maximum and minimum Eucli-
dean distance between in silico and in vivo flux solutions was
evaluated by simultaneously considering the 10 split ratios.
Confidence intervals of the experimental flux ratios were
considered by the standardized Euclidean distance, which
weights the distance between prediction and data by the
square of the corresponding standard deviation dexp. The
resulting value describes the overall deviation of the in silico
predicted flux distribution (or range of flux distributions) with
respect to the corresponding experimental reference solution,
and is henceforth referred to as predictive fidelity (Supple-
mentary Figure 1). This predictive fidelity depends on two
factors: (i) the minimal possible standardized Euclidean
distance to the in vivo results and (ii) the potential variance
of the in silico fluxes that arises from alternate FBA optima.

FBA-based flux prediction for batch cultures

First, we determined the predictive fidelity of the 99 objective/
constraint combinations for unlimited batch growth on glucose
under aerobic, anaerobic and nitrate-respiring conditions (Sauer
et al, 2004; Perrenoud and Sauer, 2005). Obviously, the agreement
is specific for each case, since it depends (i) on the particular
objective/constraint combination that defines the shape of the
solution space and (ii) the experimental reference flux distri-
bution (Figure 3, Supplementary Figure 1 and Supplementary
Table III). Since minimization of glucose consumption and
maximization of ATP yield per reaction step gave almost identical
results as maximization of biomass yield and maximization
of ATP yield, respectively, only the latter two are discussed
(Supplementary Table III). The results obtained by minimization

of reaction steps, minimization of the redox potential and
minimization of ATP producing fluxes were considerably worse
than those obtained with the other objectives, hence are not
discussed in the following (Supplementary Table III).

Without requiring additional constraints, the highest pre-
dictive fidelity for aerobic batch cultures was obtained by
maximizing ATP yield per flux unit, yielding a unique flux
prediction that is closest to the experimental data (Figure 3).
Since this nonlinear optimization function is non-convex, it
bears the danger of identifying only local optima. To confirm
that indeed a global optimum was identified, we first
reformulated the original objective function as a convex
function that contains a linear and a nonlinear, but convex
term (see Materials and methods for details). This new
nonlinear but convex function cannot be optimized per se,
since it needs a priori weighting of both function terms. Thus,
in a second step, we performed a sensitivity analysis around
the previously identified optimal solutions. Since no iteration
resulted in a solution with a higher optimal value, we have
strong indication that indeed global optima were identified
(Supplementary Figure 7). Of the remaining objective func-
tions, only the maximization of the ATP yield objective
achieved similar predictive fidelities when combined with
particular constraints. Maximization of biomass yield, in
contrast, suffered from alternate optima over a wide range of
constraints (Figure 3). Although unique results are feasible by
invoking a P-to-O-ratio (moles of ATP produced per mole of
oxygen) of unity, the predictive fidelity is still inferior to the
one obtained with the maximization of ATP objectives.

The predictive fidelity is a general criterion for the predictive
accuracy. It cannot, however, identify the individual metabolic
functions that are responsible for the deviations. To elucidate
whether these are based on large errors in single ratios or on
small errors in many ratios, we plotted in silico and in vivo
ratios as scatter plots where perfect predictions fall on the
bisecting diagonal (Figure 4). For aerobic batch cultures,
acetate secretion (R9) in combination with a sound predictive
fidelity is one main discriminating variable that was only
captured by the maximization of ATP yield per flux unit
(Figure 4A and C). In combination with oxygen constraints,
the maximization of ATP yield mimics the maximization of

Table II Experimentally determined flux split ratios under the six conditions considered

Batch Chemostat

Growth rate 0.6 h�1 0.3 h�1 0.2 h�1 0.1 h�1 0.4 h�1 0.4 h�1

Split ratioa Aerobeb Anaerobe NO3b Anaerobeb C-limitedc C-limitedc N-limitedd

R1 (flux into glycolysis) 0.7070.02 0.8270.02 0.9070.05 0.6970.12 0.6470.05 0.9670.14
R2 (flux into Entner-Doudoroff pathway) 0.1370.06 0.0070.05 0.8670.94 0.2370.20 0.1970.11 0.0070.05
R3 (flux into methylglyoxal pathway) 0.0070.05 0.0070.05 0.0070.05 0.0070.05 0.0070.05 0.0070.05
R4 (PEP to pyruvate flux) 0.7870.02 0.9670.02 0.9470.05 0.8470.14 0.7070.06 0.7270.10
R5 (pyruvate to acetylcoenzyme A flux) 0.8170.03 0.9670.02 0.9670.1 0.9170.21 0.8470.10 0.9070.15
R6 (flux into TCA cycle) 0.2470.02 0.0270.01 0.0270.01 0.6470.13 0.8570.09 0.5070.06
R7 (flux into glyoxylate shunt) 0.0070.05 0.0070.05 0.0070.05 0.4670.13 0.0070.05 0.0070.05
R8 (oxaloacetate to PEP flux) 0.0070.05 0.0070.05 0.0070.05 0.3570.08 0.1270.03 0.017 0.01
R9 (acetate secretion) 0.5870.03 0.6570.01 0.3470.01 0.0070.05 0.0070.05 0.0470.01
R10 (ethanol secretion) 0.0070.05 0.3070.02 0.6170.04 0.0070.05 0.0070.05 0.0070.05

aSplit ratios were calculated with the equations given in Table I from published absolute fluxes (Supplementary Table II).
bExperimental data was taken from (Perrenoud and Sauer, 2005).
cExperimental data was taken from (Nanchen et al, 2006).
dExperimental data was taken from (Emmerling et al, 2002).
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ATP yield per flux unit objective (Figures 3, 4B and C). Minimizing
the overall intracellular fluxes inherently leads to acetate
secretion, however, at the cost of deviations in other ratios, in
particular for Entner–Doudoroff activity (R2) (data not shown).

Akin to aerobic cultures, the maximization of ATP yield per
flux unit was the only objective that achieved reasonable
predictions without further constraints for anaerobic nitrate-
respiring batch cultures (Figures 3 and 4E). Improved
predictions are possible, however, by setting a particular
constraint on the nitrate respiration rate for the maximization
of biomass yield objective (Figures 3 and 4D). Largely

independent on the invoked constraints the anaerobic batch
culture was well predicted by all considered objective functions
(Figures 3 and 4F). This behavior is due to the low degree of
freedom in the absence of an external electron acceptor and to
the experimental uncertainty of some of the fluxes (see
Supplementary Table II), which allow for a relatively high
predictive fidelity even if the actual agreement is low.

FBA-based flux prediction for chemostat cultures

In contrast to unrestricted nutrient supply in batch cultures, a
single, defined nutrient limits the rate of growth in continuous
chemostat cultures (Russell and Cook, 1995; Hoskisson and
Hobbs, 2005). To evaluate predictions for the rather different
metabolic behavior under such conditions, we used experi-
mental flux data from slowly (0.1 h�1) and rapidly (0.4 h�1)
growing chemostat cultures under glucose- (Nanchen et al,
2006) and ammonium limitation (Emmerling et al, 2002)
(Table II and Supplementary Table II).

Largely independent of additional constraints, the maxi-
mization of ATP or biomass yield objectives approximated
all chemostat cultures best (Figures 5 and 6). Maximization
of ATP producing fluxes resulted in similar predictive fidelities
as maximization of ATP yield (Supplementary Table III).
Although mathematically distinct, both objectives maximize
ATP production and thus lead to similar in silico flux
predictions. Alternate optima occurred only in one case for
the biomass objective and can be overcome, as for aerobic
batch cultures, by constraining the P-to-O-ratio to unity. The
relative independence of the predictive fidelity on constraints
demonstrates that these objectives provide somewhat robust
predictions for metabolism under nutrient limitation. Never-
theless, various specific objective/constraint combinations
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Figure 2 Absolute range of in silico variation in individual split ratios due to
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ATP yield (B) objectives without additional constraints.

Table IV Additional constraints implemented in constraint-based FBA

Constraint Explanation Reference

P/O=1a The P-to-O ratio is equal to 1; that is, one ATP is generated per NADH in oxidative
phosphorylation. The value is based on known coupling efficiencies and
expression levels of respiratory chain components

(Calhoun et al, 1993; Gennis and
Stewart, 1996)

q(glc)/q(O2)=2/3 Oxygen uptake is coupled to the glucose uptake rate at a stoichiometry of 3:2.
Reflects enzymatic limitation for oxygen utilization

(Varma and Palsson, 1994)

qO2 maxp11.5 An upper limit on oxygen uptake was set to 11.5 mmol/(g h). Reflects the lower
end of the range of the measured enzymatic limitation for oxygen utilization

(Xu et al, 1999)

qO2 max p14.75 An upper limit on oxygen uptake was set to 14.75 mmol/(g h). Reflects the upper
end of the range of the measured enzymatic limitation for oxygen utilization

(Varma et al, 1993)

Maintenance Including the growth-independent maintenance requirements of the cell, which
was experimentally determined to be equal to 7.6 mmolATP/(g h)

(Varma and Palsson, 1994; Nanchen
et al, 2006)

Bounds Constraining intracellular fluxes to a maximum of 200% of the glucose uptake
rate because higher values were never found experimentally

(Emmerling et al, 2002; Flores et al,
2002; Fischer and Sauer, 2003; Zhao
and Shimizu, 2003)

NADPH NADPH overproduction of 35% relative to the NADPH requirements for biomass
production by forcing UdhA-mediated re-oxidation of excess NADPH

(Nanchen et al, 2006)

All constraints Simultaneous implementation of all constraints (oxygen uptake constraint of
11.5 mmol/(g h)

aFor a ratio of unity, cytochrome oxidase bd (Cyd) and NADH dehydrogenase I (Nuo) were set equal to zero.
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were also capable of describing the different conditions, in
particular the maximization of ATP yield per flux unit, in
combination with all eight constraints for both carbon-limited
chemostat cultures (Figures 5 and 6E). In sharp contrast to
batch cultures, however, the maximization of ATP yield per
flux unit objective was basically useless without further
constraints (Figure 6B).

Robustness of predicted flux solutions

As a main discriminating variable of good objectives for
aerobic batch cultures, the well-known phenomenon of
acetate overflow was only captured when maximizing the
ATP yield per flux unit (Figure 3). Maximizing the overall ATP
yield mimicked this behavior only when combined with
oxygen uptake constraints. Since particular combinations of
oxygen uptake and P-to-O ratio constraints and the frequently
used maximization of biomass yield objective should
achieve the same effect (Varma et al, 1993; Varma and Palsson,
1994), we performed a sensitivity analysis by determining
the predictive fidelity and acetate production for step-wise
increases of the oxygen uptake constraint for four P-to-O ratios
(Figure 7A and B and Supplementary Figures 2 and 3).

As for maximization of the overall ATP yield, only fine-
tuning of the network by invoking particular combinations of
P-to-O ratio and oxygen constraints resulted in reasonable flux
predictions and acetate secretion rates for the maximization
of biomass yield objective function. However, the predic-
tive fidelity was very sensitive to changes in the parameters,
such that only a narrow range of oxygen uptake constraints
enforced a good fit for a given P-to-O ratio, for example
unrealistically low oxygen uptake rates of 5–7 mmol/g h at a
P-to-O ratio of 2 (Supplementary Figures 2 and 3). For
maximization of the ATP yield objective, in contrast, the
predictive fidelity was relatively insensitive to the exact value
of the oxygen uptake and the P-to-O ratio constraint, with a
critical threshold for the oxygen uptake constraint of around
15 mmol/g h; that is, the upper bound of experimentally
observed values in glucose batch cultures (Varma et al, 1993;
Varma and Palsson, 1994; Xu et al, 1999). Since such metabolic
parameters often vary between strains or with small environ-

mental differences, a certain robustness of predicted flux
solutions with respect to the chosen constraints is a highly
desirable property for constraint-based modeling. Hence, both
ATP objectives are clearly of superior robustness for the
prediction of fluxes in aerobic batch cultures.

Are all fluxes equally difficult to predict?

To systematically analyze the predictive capability for indivi-
dual flux ratios, we defined the specific agreement ri

(Supplementary Figure 4). This value considers the deviation
between each single pair of in silico and in vivo values for all 10
split ratios and is weighted by the ratio of the corresponding
accuracies, that is the possible range of the computational split
ratio divided by the experimental standard deviation.

To obtain an overview of the most difficult to predict fluxes,
independent of the specific objective and constraints, we
applied cluster analysis to the Euclidean distance among
specific agreements r (Figure 8 and Supplementary Figures 5
and 6). The 2700 considered data points represent the 10 split
ratios for all objective/constraint combinations considered in
Figures 3 and 5 under each environmental condition. Most
difficult to predict in four out of the six conditions were the
fluxes into glycolysis (R1) and acetate secretion (R9), although
sometimes in different combinations (Figure 8A–C and F).
Exceptions were the C-limited chemostats, were fluxes
through the glyoxylate shunt (R7) and the TCA cycle (R6)
were most difficult to predict (Figure 8D and E). Thus, some
fluxes are clearly more difficult to predict than most others, but
those problematic ones often change with the environmental
conditions.

Discussion

The key question addressed here is whether intracellular
fluxes in metabolic steady state can be predicted from network
stoichiometry alone by invoking optimality principles. Our
systematic and statistically rigorous comparison of FBA-based
in silico flux predictions from 99 objective/constraint combi-
nations to in vivo fluxes from 13C-experiments demonstrated
that prediction of relative flux distributions is, within limits,
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possible. Since no single objective predicted the experimental
data for wild-type E. coli under all conditions, the pivotal
element is to identify the most relevant objective for each
condition.

For unlimited growth on glucose in oxygen or nitrate
respiring batch cultures, by far the best objective function
was nonlinear maximization of the ATP yield per unit of flux,
which is a combination of the linear maximization of overall
ATP yield and minimization of the overall flux. In some
cases, similar predictions could be achieved by combining the
overall maximization of ATPand biomass yield objectives with
particular oxygen uptake constraints. Under nutrient scarcity
in nutrient-limited continuous cultures, in contrast, the linear
maximization of ATP or biomass yield were clearly superior.
As a result of the low degree of freedom in non-respiring batch
cultures, all objective functions lead to equally well flux
predictions.

As an unexpected key result, model preconditioning
through additional and potentially artificial constraints is not
necessary if the appropriate objective function is chosen for a
given condition. Invoking additional constraints for suitable
objectives achieved only subtle improvements or avoided
alternative optima in few cases. When combined with
particular constraints, even suboptimal objectives could be
forced to yield equally accurate predictions for some condi-
tions; in the sole case of nitrate respiration even better
predictions. Setting of these additional constraints, however, is
condition- and objective specific, thus requires considerable a
priori knowledge to be biologically meaningful. Except for
subtle differences in predictive fidelity, all major conclusions

are independent of using normalized ratios instead of absolute
flux values (data not shown).

We explicitly considered the fundamental FBA problems of
alternate optima and experimental accuracy by size reduction
through calculability analysis and by including confi-
dence regions for in vivo fluxes in the standardized Euclidean
distance, respectively. An important question is whether or not
our results are model dependent. To address this point, we
verified the key conclusions with two genome-scale models of
E. coli metabolism (Edwards and Palsson, 2000b; Reed et al,
2003). Although specific properties such as flux variability
clearly depend on the network structure of the particular
stoichiometric network model (see below for details), the
above-identified objectives also achieved the best predictions
for fluxes in the central carbon metabolism with either
genome-scale model (data not shown).

Clearly, alternate optima occurred also in genome-scale
network models (see Materials and methods for details).
Independent of the model size, however, in silico variability
can be avoided such that uniquely defined solutions are
obtained when low P-to-O ratios are assumed or when all
internal proton fluxes are balanced. With the proton-balanced
genome-scale model of Reed et al (2003), for example, such
unique flux solutions can be obtained. The solution space
spanning all alternate optima has previously been scanned for
biological meaning (Mahadevan and Schilling, 2003; Reed and
Palsson, 2004; Wiback et al, 2004), and identified interesting
correlations with levels of gene expression that point to
evolutionary constraints on how tight certain reactions need to
be regulated (Bilu et al, 2006). A potential complication is that
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the solution space itself is not, or not entirely, an inherent
network feature, but also a function of the arbitrarily chosen
objectives and constraints.

An important distinction must be made between FBA-based
prediction of the typically investigated general physiology
(i.e., extracellular uptake and production rates and the growth
rate) and the here attempted prediction of the underlying
intracellular flux distribution, which has several-fold more
variables. Hence, there is no immediate contradiction between
good prediction of growth physiology obtained by maximizing
the growth yield (Price et al, 2004) or minimizing the redox
production rate (Knorr et al, 2007), and their here demon-
strated limited capacity to predict the underlying flux state. In
some cases, alternate flux optima are responsible for the
apparent discrepancy and in others it is primarily the specific
combination of chosen constraints that explain why good
physiology predictions were achieved with suboptimal objec-
tives. By demonstrating that intracellular fluxes can be
approximated with experimentally validated optimality as-
sumptions, we go beyond flux prediction algorithms such as
minimization of metabolic adjustment (Segre et al, 2002) or
regulatory on/off minimization (Shlomi et al, 2005) that
require a reference flux distribution in the wild type to predict
fluxes in mutants. Carefully chosen objectives achieve
intrinsically good prediction not only of growth physiology,
but also of intracellular fluxes in wild-type E. coli without
preconditioning the system through additional constraints
apart from the experimentally determined growth rate. Since
the network model was identical in all cases, the identified
optimality functions potentially reflect the evolved regulatory
processes that realize the particular flux states under different
environmental conditions.

Under nutrient scarcity in chemostat cultures, metabolism
normally supports efficient biomass formation with respect to
the limiting nutrient (Russell and Cook, 1995). Based on our
results, this operational state appears to have evolved under
the objective to maximize either the ATP or biomass yield
(synonymous to the frequently used maximization of growth
rate objective). Under conditions of unlimited growth in
aerobic or nitrate-respiring batch cultures, in contrast, energy
production is clearly not optimized per se because cells secrete
large amounts of acetate instead of using the more efficient
respiratory chain.

What then is the biological interpretation of the more
appropriate maximization of the ATP yield per flux unit?
Optimization of this objective is realized by maximizing ATP
production (the nominator) and by minimizing the overall
intracellular flux (the denominator). Hence, small networks
with yet high, albeit suboptimal catabolic ATP formation are
identified, which has three potential biological consequences.
Firstly, resources are economically allocated because expen-
ditures for enzyme synthesis are, on average, greater for longer
pathways. Secondly, suboptimal ATP yields dissipate more
energy and thus enable higher catabolic rates because the
difference between the free energies of substrates and products
must be used for both, energy conservation by synthesizing
ATP (increase the yield) and energy dissipation to drive the
chemical reaction (increase the rate) (del Valle and Aledo,
2002; Pfeiffer and Schuster, 2005). Thirdly, at a constant
catabolic rate, a small network results in shorter residence

times of substrate molecules until they generate ATP and
probably other cofactors. The relative contribution of these
consequences to the evolution of network regulation is
unclear, but simultaneous optimization for ATP yield and
catabolic rate under this optimality principle identifies a trade-
off between the contradicting objectives of maximum overall
ATP yield and maximum rate of ATP formation (Pfeiffer et al,
2001). Under nutrient scarcity, in contrast, the metabolic state
is closer to an optimal yield of ATP (or biomass) at the cost of
the rate of formation.

Materials and methods

Stoichiometric model and constraints

The constructed stoichiometric model of E. coli contains all presently
known reactions in central carbon metabolism with 98 reactions and
60 metabolites (Supplementary Table I). To apply FBA, the reaction
network was automatically translated into a stoichiometric matrix
(Schilling and Palsson, 1998) by means of a parser program
implemented in Matlab (MATLABs, version 7.0.0.19920 (R14), The
MathWorks Inc., Natick, MA). Assuming steady-state mass balances,
the production and consumption of each of the m intracellular
metabolites Mi is balanced to yield

S n ¼ 0 ð1Þ

with

nlb
i pnipnub

i

S corresponds to the stoichiometric matrix (m	n) and n (n	 1) to
the array of n metabolic fluxes with ni

lb as lower and ni
ub as upper

bounds, respectively. The above equations represent the conser-
vation law of mass that is fundamental to constraint-based modeling.
For all herein presented stoichiometric analyses, maximization of
biomass yield is synonymous to the frequently used maximization of
growth rate objective (Price et al, 2004). This is because stoichiometric
models are sets of linear balance equations that are inherently
dimensionless, hence maximization of the biomass reaction optimizes
the amount of product (i.e., the yield) rather than a time-dependent
rate of formation. The P-to-O ratio constraint was implemented by
omitting the energy-coupling NADH dehydrogenase I (Nuo), cyto-
chrome oxidase bo3 (Cyo) and/or cytochrome oxidase bd (Cyd)
components of the respiratory chain. For a ratio of unity, Cyd and Nuo
were set equal to zero. Under anaerobic conditions, electron flow is
only possible via the NADH oxidases Nuo or NADH dehydrogenase II
(Ndh) to fumarate reductase (Frd), hence coupled to succinate
fermentation. For nitrate respiration, the terminal oxidase nitrate
reductase (Nar) was used instead of Cyd or Cyo (Unden and Bongaerts,
1997).

For the genome-scale analysis we used two recently reconstructed
models of E. coli metabolism (Edwards and Palsson, 2000b; Reed et al,
2003). In silico growth was simulated on glucose minimal medium for
all six environmental conditions. ADP remained unbalanced, since
otherwise formation of adenosine would be carbon-limited. For the
proton-balanced model of Reed et al (2003), severe alternate optima
occurred in central carbon metabolism given an unlimited proton
exchange flux between the cell and the medium and a P-to-O ratio of 2,
that is the upper bound of the biologically feasible range of P-to-O
ratios (Unden and Bongaerts, 1997). To prevent the unlimited
production of ATP equivalents through the ATPS4r reaction under
this condition, all external protons involved in the respiratory chain
and the transhydrogenase reaction were balanced (specifically, we
balanced the external protons around the reactions ATPS4r, TDH2,
CYTBD, CYTBO3, NO3R1, NO3R2, NADH6, NADH7, NADH8). A P-to-O
ratio of 2 was implemented by assuming both the transport of four
protons through CYTBO3 and NADH6 across the membrane and the
diffusion of four protons through ATPS4r for the formation of one ATP
equivalent.
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Objective functions

Linear optimization was used to identify optimal solutions for the
objectives maximization of biomass or ATP yield, minimization of
glucose consumption, minimization of the redox potential and
minimization as well as maximization of ATP producing fluxes. The
mathematical definition for all 11 objective functions is given in Table
III. While identification of a global optimal value is guaranteed,
alternate optima occur frequently. Nonlinear optimization such as the
minimization of the overall intracellular flux and maximization of
biomass or ATP yield per flux unit do not produce alternate optima.
Minimization of the overall intracellular flux always identifies a global
optimum because the underlying optimization problem is quadratic
and thus convex. Since such convexity cannot be assumed for
maximization of biomass or ATP yield per flux unit, we used the
general nonlinear solver of the programing package LINDO (Lindo
Systems Inc., Chicago, IL) with 100 randomly chosen starting values to
find global optima for these two non-convex nonlinear optimization
problems. We implemented two independent approaches to validate
our results. In a first approach we randomly changed the value of 5%
of the variables by 10% iteratively 100 times for all constraint
permutations (data not shown). Flux distributions with a higher
objective function value were not identified in any of the iterations. In a
second approach we reformulated both non-convex nonlinear
objective functions

nATPPn
i¼1

n2
i

and
nbiomassPn
i¼1

n 2
i

to a nonlinear, but convex form

nATP

nglucose
� e

Xn

i¼1

n 2
i ð2aÞ

nbiomass

nglucose
� e

Xn

i¼1

n 2
i ð2bÞ

respectively, corresponding to maximization of (2a) ATP and (2b)
biomass yield per flux unit, respectively (Table III contains the
mathematical definitions of all objective functions). e represents a
small value that characterizes the unique trade-off between ATP
(biomass) maximization and minimization of the flux norm. We
assessed the objective function value of ATP (biomass) yield
maximization per flux unit for different e values according to e¼e0

(170.5), where e0 was set equal to the objective function value, which
was identified previously with the non-convex nonlinear objective
function of max ATP (biomass) yield per flux unit, for the particular
environmental condition (Supplementary Figures 7 and 8). Given
e¼e0, the previously found flux distribution yielded the optimal
solution for every environmental condition (Supplementary Figures 7
and 8). For all other e values, independent optimizations only lead to
suboptimal solutions. Hence, in the present case we have strong
indication that global optima are actually identified.

For minimization of the number of reaction steps and for the
maximization of the ATP yield per reaction step, we used the mixed-
integer solver of the programing package LINDO (Lindo Systems Inc.).
All mixed-integer optimizations were formalized as:

min =max f ð3aÞ

s:t: S n ¼ 0 ð3bÞ

nlb
i pnipnub

i ð3cÞ

ni � yiðnub
i � wub

i Þpwub
i ð3dÞ

ni � yiðnlb
i � wlb

i ÞXwlb
i ð3eÞ

y 2 f0; 1g ð3fÞ

wub
i ¼ wi þ kjwij þ e ð3gÞ

wlb
i ¼ wi � kjwij � e ð3hÞ

where for each flux i, yi¼1 stands for a non-zero, that is active flux in
ni and yi¼0 otherwise, and wi

ub and wi
lb are thresholds for determining

non-zero fluxes (equations 3d–f), with k and e specifying the relative
and absolute ranges of tolerance, respectively (equations 3g and h).
The definitions of the objective functions f of linear minimization of
reaction steps and nonlinear maximization of ATP yield per reaction
step (equation 3a) can be taken from Table III. The constraints of the
original linear programing problem with respect to steady state of mass
balances and enzyme reversibilities were maintained (equations 3b
and c). For k and e, we chose minimal values that still resulted in
reasonable running times of the mixed-integer solver (specifically, we
chose k¼0, e¼0 and k¼0, e¼1 for linear minimization of reaction steps
and nonlinear maximization of ATP yield per reaction step, respec-
tively). Optimality of the solution obtained by the mixed-integer
nonlinear optimization was verified by randomly changing 5% of the
integer values 10 times iteratively for the six conditions without
additional constraints (data not shown).

Calculability analysis

Instead of comparing all computationally (ni) and experimentally
identified fluxes (ni

exp) in the network, we focused on those that are
sufficient to describe the complete systemic degree of freedom because
most fluxes are linearly dependent. This minimal subset of fluxes was
identified by calculability analysis (Van der Heijden et al, 1994; Klamt
et al, 2002) from the null space of the stoichiometric matrix S and
allowed the calculation of all unique reaction rates in the under-
determined network. To reduce the considerable difference in
magnitude of different fluxes in the network, their rates were
expressed as split ratios R of divergent fluxes (Figure 1 and Table I),
hence they are scaled to values between zero and unity. Error
propagation was used to take the standard deviation of each of the
experimentally determined split ratios into account. A default error of
5% was assumed for inactive flux ratios. Secretion of succinate,
pyruvate and formate was not considered for calculability analysis,
since the corresponding rates are negligible. Non-carbon fluxes such as
respiration were also neglected.

Predictive fidelity and alternate optima

Generally, there are two basic principles to quantify the agreement
between data series; that is, correlation coefficients that measure linear
dependencies and the geometric distance (McShane et al, 2002; Segre
et al, 2002). Since we were interested in the similarity between
multiple computational and experimental results rather than their
linear dependency, we used the Euclidean distance to quantify the
overall agreement. The Euclidean distance belongs to the group of L2

distance measures, which capture the deviation between two points in
absolute terms (Diggle, 1983)

jjxjj2 ¼
Xn

i¼1

x2
i

 !1=2

ð4Þ

Our reduction of the overall solution space to a minimal set of 10 linear
independent split ratios allowed the direct comparison of complete
experimental and computational flux distributions. We defined the
term predictive fidelity as the overall agreement between complete
experimental and computational flux solutions relative to the specific
experimental variance. This explicitly includes putative variability of
in silico split ratios due to existence of alternate optima. The global
optimal value Zobj of different objective functions f (e.g., maximization
of biomass or ATP yield) is determined in a preliminary optimization
step, which defines the computational solution space. In case of linear
objective functions, with potential alternate optima, the best and the
worst possible agreement of the underlying range of flux vectors and
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experimental data is subsequently quantified by minimizing and
maximizing the standardized Euclidean distance, DS, respectively:

max =min D S ð5aÞ

s:t: f T n ¼ Zobj ð5bÞ

S n ¼ 0 ð5cÞ

nlb
j pnjpnub

j ð5dÞ

D S ¼ eT W e ð5eÞ

e ¼ Rcomp
i � Rexp

i ð5fÞ

Wi; i ¼
1

sexp
i

X
i

1

sexp
i

 !�1

ð5gÞ

Ri ¼ fiðnÞ ð5hÞ

The global optimal value Zobj has to hold (equation 5b) as well as the
constraints of the original linear programing problem (equations 1, 5c
and d). DS marks the standardized Euclidean distance (equation 5e),
where the deviation e between in silico and in vivo ratios, Rcomp and
Rexp, respectively (equation 5f), is weighted by the experimental
variance sexp (equation 5g). Finally, the split ratios R are a function of
intracellular fluxes n (equation 5h). Note that both computational and
experimental split ratios determine the Euclidean distance, such that
even small changes in the in vivo and in silico results can result in a
completely different behavior.

Hence, the predictive fidelity explicitly considers both alternate
optima and unique solutions. All optimizations for the calculation of
the predictive fidelity were performed with linprog and fmincon
(MATLABs, version 7.0.0.19920 (R14)). Iterative calculations with
100 different, randomly chosen starting points were performed when
the nonlinear solver fmincon was used.

Specific agreement for individual split ratios

Predictive fidelity ranks the overall agreement between FBA flux
predictions and experimental data. For detailed analysis of the
predictive agreement in individual split ratios, experimental con-
fidence intervals and theoretical flexibility due to alternate optima had
to be taken into account. The absolute distance between each
experimental Rexp and the mean computational split ratio Rcomp,mean

was weighted by the experimental standard deviation dexp and the
possible range DR of the computational split ratios (Supplementary
Figure 4). The specific agreement r was quantified by a standardized
variable:

ri ¼ jRexp
i � Rcomp;mean

i j DRcomp
i

dexp
i

� �
ð6Þ

By weighting the absolute distance with the experimental uncertainty,
the predictive accuracy is taken into account, that is a large absolute
deviation is considered less severe if it is associated with a large
experimental uncertainty dexp. On the other hand, the absolute
deviation is considered more severe if it is associated with a large
computational uncertainty DR. A default value of 0.05 was chosen for
dexp or DR, respectively, when the values were zero.

The hierarchical cluster trees were created with the linkage
algorithm (MATLABs, version 7.0.0.19920 (R14)) using the Euclidean
distances among all data points. The cophenetic correlation coeffi-
cients (i.e., the correlation coefficients of the distance values)
(Legendre and Legendre, 1998) were calculated for all cluster trees
to guarantee a faithful representation of the dissimilarities among the
10 ratios for every objective/constraint combination considered.
Groups of nodes were assigned where the linkage among the nodes
was less than 0.7, when the linkage was normalized to values between
0 and 1.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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